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We describe a fast method for seismic ray tracing in a cellular model, in which cells can have general polynomial
shapes with non-planar bounding faces. The key idea is integration of the ray equations in terms of local cell
coordinates rather than spatial coordinates. This approach allows for efficient detection of cell boundary crossing
events, suppressing the need for costly non-linear equation solvers in the inner loop.

cellular model, ray tracing, bezier blocks

1 – INTRODUCTION

Seismic simulation is a powerful tool for a number of studieson seismic modeling, imaging and inversion for
exploration and monitoring of oil reservoirs. These include, among others, planning of acquisition surveys, image
interpretation through identification of key reflections, discrimination of primaries and multiples and amplitude
analysis (AVO and AVA).

Among various simulation techniques, ray tracing (Červený (2001)) stands out for its versatility and computa-
tional effectiveness. As a consequence, it plays an important role in some more sophisticated simulation methods,
such as wavefront construction (see, e.g., Vinje et al., 1999), inversion methods, such as seismic tomography
(see e.g., Duveneck, 2004), and others. Kinematic and dynamic ray tracing produce qualitative and quantitative
information, namely images, traveltimes, amplitudes and phase shapes that relate various aspects of the wave
propagation within the medium under investigation and can,thus, help to understand and interpret the seismic
data.

Seismic simulation requires a computer model that capturesthe geometry of layer structures and interfaces,
as well as the lithology of the subsurface region of interest. Subsurface models that are adequate for ray tracing
calculations are typically layered structures, which smoothly varying parameters (velocities and density) within
the layers. The layer boundaries are typically piecewise smooth surfaces, across which the parameters may have
jumps.

Grid-based models, as generally used in tomographic and migration studies, cover the region of interest by a
dense uniform grid and assign physical properties to each node of the grid. These models are simple and flexible but
space consuming and do not adequately model certain phenomena such as sharp interfaces and narrow intrusions,
which are extremely important for seismic ray tracing.

Layer-based models partition the region of interest into layers by surfaces which are modeled as meshes of
simple patches (see Gjøystdal et al. (1983)). Layer-based models can naturally represent sharp interfaces but
require complex and costly point-mesh location algorithmsto detect ray-interface intersectios.

Cell-based models partition the region of interest into a number ofblocks, whose relatively simple geometric
shapes are described by a few parameters (see, e.g., Konig, 1995 and Wang, 2000) . The shape is usually described
by polynomials that map some simple geometric solid to Cartesian space. Ray-interface tests are replaced by
simpler tests of a ray against the boundary faces of the current block.

Realistic subsurface models which are suitable for ray tracing must be able to represent interfaces with complex
shapes, which considerably increase the difficulty of modelconstruction and seismic simulation. Cell-based mod-
els, in particular, require blocks with non-planar faces inorder to represent smooth layer interfaces. Ray tracing in
such models requires a conversion of Cartesian coordinatesto local coordinates to detect the ray intersection with
the block boundary. This demands solving a system of polynomial equations, which, in general, requires expensive
iterative numerical methods such as Newton or Newton-Ramphson (see e.g. Press et al, 1986).
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In this paper, we propose a new approach for ray tracing in cell-based models, that guarantees efficient test for
boundary crossing detection. The key is performing the ray integration in terms of the block’s domain coordinates
instead of Cartesian coordinates.

2 – KINEMATIC RAY TRACING

In the high-frequency approximation, the elastodynamic equation produces a non-linear first-order partial differ-
ential equation for the traveltime which is usually called theeikonal equation. This equation can be written using
the Hamiltonian formalism as

H(xc, p) = 0 (1)

whereH is theHamiltonian function, p = ∇T andT = T (x) is the traveltime from the ray’s origin to the pointx
within the subsurface model. Many suitable formulations for H can be used (seěCervený (2001)). The one chosen
here is

H(x, p) = ln(v||p||). (2)

Application ofthe method of characteristics(see, e.g. Herzberger,1958) to equation (2) provides three-dimensional
trajectories, calledrays, along which the eikonal equation (1) is satisfied. Each ray is described by the evolution of
theray stateconsisting of aposition functionx = x(T ) and aslowness functionp = p(T ) of the time,T , chosen
as the running parameter to describe the ray. The slowness vector,p (which, in isotropic media, is orthogonal to
the wavefront) is related to the so-calledphase velocity, v = v(x) by the relationship|p| = 1/v. The ray evolution
is described by thecharacteristic equations(Herzberger,1958)

dx

dT
= ∇pH = v2p ,

dp

dT
= −∇xH = −

1

v
∇xv. (3)

Here, we use the notation∇x = (∂/∂x1, · · · , ∂/∂xn) and∇p = (∂/∂p1, · · · , ∂/∂pn), wheren is the dimension
of the subsurface model (2 or 3).

The O.D.E. system (3) can, in principle, be numerically solved by any integration method such as Runge-Kutta
(Pressman et al., 1986).

Equations (3) are only valid as long as the ray is traveling ina medium wherev(x) varies smoothly withx
(finite derivatives), which is assumed to be the case within the geological layers. When the ray is about to leave a
layer, the intersection point with the layer’s boundary must be calculated. At this intersection point, the ray splits
into new rays, reflected and/or transmitted. Each new ray changes direction relative to the original ray depending
on the ray’s angle of incidence at the interface, and the velocity contrast across the interface, according to Snell’s
law (Červený (2001)). Each new ray is then traced through the nextlayer. In order to limit the complexity of the
simulation, it is general practice to specify the desired wavemodes of the rays along each traversed layer, the so
calledsignatureof the ray (seěCervený (2001)).

3 – GEOLOGICAL MODEL

We assume that the geological model is a partition of space into a finite number ofblocksor cells. Each block is a
simple geometric solid (cube, triangular prism or tetrahedron) deformed by polynomial transformations. Adjacent
blocks need not share whole faces. Physical properties are assumed to vary smoothly within each block. These
concepts are defined formally below

3.1 Simplices and simploids

We define acanonical simplex of dimensionn ≥ 0 as

∆n = {(u0, · · · , un) ∈ Rn+1
∣∣ ui ≥ 0 ∧

n∑

i=0

ui = 1} (4)

The canonical simplices with dimension 1,2 and 3 are the canonical segment, triangle and tetrahedron, illustrated
in figure 1. Note thatu0, · · · , un are thebarycentric coordinatesrelative to the simplex (see Farin (1992)).

The canonical simploid of kind(h1, · · · , hk), denoted byS(h1,··· ,hk) is defined as the Cartesian product of
simplices∆h1 × · · · × ∆hk (see deRose et al. (1993)). Figure 2 illustrates some simploids.
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Figure 1: Canonical simplices.
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Figure 2: Canonical simploids.

3.2 Affine extension of domains

By extending the canonical simplex to include points with negative coordinates we obtain theaffine extensionof
∆n; which is theaffine space with dimensionn,

An = {u ∈ Rn+1
∣∣

n∑

i=0

ui = 1}. (5)

Similarly, we define theaffine extensionof a simploidS(h1,··· ,hk) as themulti-affine space

Ah1,··· ,hk = Ah1 × · · · × Ahk . (6)

3.3 Simplicial and simploidal polynomials

We say that a functionF from An to R is a simplicial polynomial function of degreeg if it is a homogeneous
polynomial function of degreeg from Rn+1 to R restricted toAn.

Let u(1), · · · , u(k) be points ofAh1 , · · · , Ahk , respectively. We define theith transversal section ofAh1,··· ,hk

atu = (u(1), · · · , u(k)) ∈ Ah1,··· ,hk , denoted byAh1,··· ,hk

∣∣
i
(u), as

{u(1)} × · · · {u(i−1)} × Ahi × {u(i+1)} · · · {u(k)} (7)

Note that there is a bijection fromA(h1,··· ,hk)
∣∣
i
(u) to Ahi .

A simploidal polynomial function of typeh1, · · · , hk and degreeg = (g1, · · · , gk) is a functionF from
Ah1,··· ,hk to R such that when restricted to any transversal sectionAh1,··· ,hk

∣∣
i
(u), i ∈ {1, · · · , k} equals a simpli-

cial polynomial function of degreegi from Ahi to R. Note thatF cannot, in general, be factored into the product
of k simplicial polynomial functions.

3.4 Gephysical block

We define ageophysical block withn-dimensional domain andm-dimensional range, or a(n, m)block, as a pair
(D, F ) whereD (the domain space) is ann-dimensional canonical simploid andF is a simploidal polynomial
function fromD̂ to Rm, whereD̂ is the natural extension ofD.
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3.5 Bézier representation of a block

Let B = (D, F ) be a(n, m)-block whose domainD equalsS(h1,··· ,hk). Observe that the domain is completely
defined by thek-uple(h1, · · · , hk). The simploidal polynomial functionF can be expressed in terms of itsBézier
coefficients(see deRose et al. (1993)).

In the special case whereD is a simplex∆n, the representation ofF of degreeg consists off =
(
g+n

n

)
Bézier

coefficients which are vectors ofRm. We denote these coefficients byci wherei ranges overIg
n, the set of all

(n + 1) tuples(i0, · · · , in) of natural numbers whose sum isg (see the example in figure 3). The functionF can
be expressed as

F (u) =
∑

i∈I
g
n

ciB
n,g
i (u) (8)

whereBn,g
i is theBernstein-Bézier polynomial of dimensionn, degreeg and indexi, defined as

Bn,g
i (u) =

g

i0! · · · in!
ui0

0 · · ·uin

n .

c
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Figure 3: Bézier representation of a(2, 3)-block (D, F ). The domainD is ∆2 andF has 3 components,X, Y, Z,
each a simplicial polynomial of degree 3.

The computation ofF (u) by formula (8) can be performed in
(
g+n
n+1

)
n-dimension linear interpolation steps by

the DeCastejau algorithm (see Peters (1994)).
Now suppose the domainD is S(h1,··· ,hk) and F is a simploidal polynomial function of degreeg =

(g1, · · · , gk) (see figure 4). The Bézier representation ofF consists of
∏k

j=1

(
gj+hj

hj

)
Bézier coefficients; The

value ofF at a pointu = (u(1), · · · , u(k)) of D̂ is given by

F (u) =
∑

i1∈I
g1

h1

...
ik∈I

gk
hk

ci1,··· ,ik
Bg1,h1

i1
(u(1)) · · · Bgk,hk

ik
(u(k)). (9)

whereci1···ik
are Bézier coefficients.

(a)

dx
dx

dy

dy

(b)

Figure 4: Bézier representation of simploidal polynomial functions whose domains are (a)S1,1 and (b)S1,1,1.
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Figure 5: Example of a cellular model.

3.6 Cellular model

For this paper, we define a geophysical model as a collection of (n, m)-blocks whose union covers the region of
interestG and whose interiors are disjoint. See figure 5.

The cellular model includes alsotopological relationsamong blocks (adjacencies, incidences, etc.) which aim
to increase the effectiveness of navigation inside the model; and domain coordinate correspondencesbetween
adjacent blocks. Namely, for each pair of(n, m)-blocksB′ = (D′, F ′) andB′′ = (D′′, F ′′) that are adjacent
through a common faceE we store an affine (1st degree) correspondence between the coordinates of̂D′ andD̂′′.
The correspondence is represented by two affine mapsΘ′ andΘ′′ from D̂′ andD̂′′ to Rn such that the images
Θ′(D′) andΘ′′(D′′) have disjoint interiors but share the faceE. Figure 6 illustrates such correspondence.

Figure 6: Domain coordinate correspondence.

4 – CELL RAY TRACING IN BLOCKS LOCAL COORDINATES

In our proposed adaptation of ray tracing, the ray equations(3) are expressed and integrated in terms of block’s local
coordinates (see Figure 7). More precisely, we replace the state[x, p] by [α, p] whereα are the local coordinates
of the pointx in the current block. Note that the slowness vector remains in global (Cartesian) space coordinates.

For this purposes, we define thesimplicial local coordinatesα = (α1, · · · , αn) of ∆n as an arbitrary affine
mapping from the affine extension ofAn to Rn. An obvious choice would beαi = ui for i = 1, · · · , n (discarding
u0). For a simploidSh1,··· ,hk the local coordinates are obtained by concatenating the local coordinates of the
constituent simplices∆h1

, · · · , ∆hk .
System (3) is then rewritten as

dα

dT
= W−1v2p

dp

dT
= −W−1 1

v
∇αv (10)

whereW is the Jacobian of the block’s shape functions.

Wij =
∂xi

∂αj

(11)
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Figure 7: Illustration of parametric ray tracing

The JacobianW describes the change from the block’s local coordinates to global Cartesian coordinates. The
∇α operator denotes(∂/∂α1, · · · , ∂/∂αn) and∇p denotes(∂/∂p1, · · · , ∂/∂pn); wheren is the domain simploid
dimension, andpi is the ith Cartesian coordinate of the slowness vectorp. Each partial derivative is a polyno-
mial simploidal function whose Bézier coefficients are easily and efficiently calculated from the block’s Bézier
coefficients.

System (10) is not valid when the matrixW is singular. However, the absence of such singularities is abasic
requirement for a well formed cell-based geomertic model.

The main advantage of this formulation is that detection of the current block limits becomes a set of trivial tests
(αi = 0) or 1st degree tests (α1 + · · · + αn = 1) on the local coordinates.

5 – PHYSICAL PROPERTY MODELLING

The usual approach to modelling space-varying physical properties is what we calldecoupled modelling. In this
approach, space-varying physical properties are specifiedfor each layer by mathematical functions of the Cartesian
coordinates (e.g. B-splines) defined over a fixed 3D mesh thatis unrelated to the model’s layers and cells. A
drawback of this approach is the necessity of a second package of spline/mesh modeling software, with its own data
structures, libraries, and editors. Another drawback is that it does not guarantee matching of physical properties
with layer shape.

We propose acoupled modelwhere the relevant physical properties are modelled by polynomial functions of
the domain coordinates inside each block. Typically, for a three-dimensional model, we use(3, m)-blocks with
m > 3 where the shape of each block(D, F ) is described by the first three components ofF , while the other
m − 3 components define the rock’s physical properties. This approach does not require separate data structures,
libraries or editors for physical property modelling. Additionally, the unified parameterization ensures a perfect
match between shape and properties (see Figure 8).

Figure 8: Illustration of a two-dimensional cell-based model with coupled physical modelling. The cells are(2, 3)-
blocks whose domains are the canonical triangleS(2) = ∆2 and whose geometry (black lines) and velocity (color
scale) are defined by three simplicial polynomial functionsF (u) = (X(u), Y (u), v(u)) of degree3.
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Our proposed ray-tracing method is compatible with both approaches for property modelling. Formulation (10)
assumes our coupled physical modelling. For the decoupled model, we simply replaceW−1∇αv by∇xv.

Integration of system (10) requires the evaluation ofdα/dT anddp/dT , which, in turn require evaluatingv,
∇αv and the jacobianW at o point with given local coordinatesα. The velocityv can be obtained by applying
the DeCastlejau algorithm to thev component of the current block’s functionF . For the gradient∇αv, we can
precompute the Bézier coefficients of∂v/∂α1, · · · , ∂v/∂αn for the current block (Farin (1992)). These derivatives
are polynomials of degreeg − 1 whereg is the degree ofF . Then,∇αv can be computed for any givenα by
n applications of DeCastlejau. The Jacobian elementWij can be computed in the same way, from the Bézier
coefficients of theX, Y, Z components ofF .

Observe that the computation of the JacobianWij and of the productsW−1
ij ∇αv andW−1

ij v2p does not require
iteration or recursive subdivision, and is therefore faster in general than the ray-boundary tests that are eliminated
by our ray tracing approach.

6 – NUMERICAL EXAMPLE

As an example, consider ray tracing in the two-dimensional geophysical model shown in Figure 9, which has the
same cell type and physical modelling as Figure 8. Figure 10 shows the results of tracing a fan of rays from the
upper left corner with a fourth-order Runge-Kutta integrator (Press et al. (1986)). The initial ray direction varied
from 5◦ to 85◦ in 5◦ increment. The ray positionX(T ) was sampled at each2ms,

Figure 9: Velocity model used in Figure 10. The velocity range is from 1500m/s (cyan) to 5000m/s (red).

Figure 10: Propagation of a fan of rays in the proposed cellular model.

7 – CONCLUSIONS AND FUTURE WORK

Integrating ray equations in terms of local coordinates (equation (10) ) reduces considerably the cost of boundary
tests when integrating the ray propagation O.D.E. We plan further improvements by detecting whether system (10)
has analytical solution in the current block, which would allow us to cross that block in a single step.
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