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We describe a fast method for seismic ray tracing in a celmladel, in which cells can have general polynomial
shapes with non-planar bounding faces. The key idea isriatieg of the ray equations in terms of local cell
coordinates rather than spatial coordinates. This appraldmws for efficient detection of cell boundary crossing
events, suppressing the need for costly non-linear equatitvers in the inner loop.

cellular model, ray tracing, bezier blocks

1 —-INTRODUCTION

Seismic simulation is a powerful tool for a number of studi@sseismic modeling, imaging and inversion for
exploration and monitoring of oil reservoirs. These induamong others, planning of acquisition surveys, image
interpretation through identification of key reflectiongsadimination of primaries and multiples and amplitude
analysis (AVO and AVA).

Among various simulation techniques, ray traci@gtveny (2001)) stands out for its versatility and computa-
tional effectiveness. As a consequence, it plays an impbirtde in some more sophisticated simulation methods,
such as wavefront construction (see, e.g., Vinje et al. 9L9%@version methods, such as seismic tomography
(see e.g., Duveneck, 2004), and others. Kinematic and dignay tracing produce qualitative and quantitative
information, namely images, traveltimes, amplitudes ahdsp shapes that relate various aspects of the wave
propagation within the medium under investigation and ¢huas, help to understand and interpret the seismic
data.

Seismic simulation requires a computer model that captinegeometry of layer structures and interfaces,
as well as the lithology of the subsurface region of inter&tbsurface models that are adequate for ray tracing
calculations are typically layered structures, which sthiyovarying parameters (velocities and density) within
the layers. The layer boundaries are typically piecewiseamsurfaces, across which the parameters may have
jumps.

Grid-based models, as generally used in tomographic andhtitg studies, cover the region of interest by a
dense uniform grid and assign physical properties to eadb atthe grid. These models are simple and flexible but
space consuming and do not adequately model certain pher@osneh as sharp interfaces and narrow intrusions,
which are extremely important for seismic ray tracing.

Layer-based models partition the region of interest iny@ta by surfaces which are modeled as meshes of
simple patches (see Gjgystdal et al. (1983)). Layer-bassdkels can naturally represent sharp interfaces but
require complex and costly point-mesh location algorithondetect ray-interface intersectios.

Cell-based models partition the region of interest into enber ofblocks whose relatively simple geometric
shapes are described by a few parameters (see, e.g., KéAgahd Wang, 2000) . The shape is usually described
by polynomials that map some simple geometric solid to Gatespace. Ray-interface tests are replaced by
simpler tests of a ray against the boundary faces of the tisteck.

Realistic subsurface models which are suitable for rayrigamust be able to represent interfaces with complex
shapes, which considerably increase the difficulty of medektruction and seismic simulation. Cell-based mod-
els, in particular, require blocks with non-planar facesiider to represent smooth layer interfaces. Ray tracing in
such models requires a conversion of Cartesian coorditmatesal coordinates to detect the ray intersection with
the block boundary. This demands solving a system of polyale@quations, which, in general, requires expensive
iterative numerical methods such as Newton or Newton-Ramplsee e.g. Press et al, 1986).
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In this paper, we propose a new approach for ray tracing Irbesled models, that guarantees efficient test for
boundary crossing detection. The key is performing themgggiration in terms of the block’s domain coordinates
instead of Cartesian coordinates.

2 —KINEMATIC RAY TRACING

In the high-frequency approximation, the elastodynamigagign produces a non-linear first-order partial differ-
ential equation for the traveltime which is usually callbd ¢ikonal equationThis equation can be written using
the Hamiltonian formalism as

H(xc,p) =0 (1)

whereH is theHamiltonian functionp = VT andT' = T'(x) is the traveltime from the ray’s origin to the point
within the subsurface model. Many suitable formulationsHocan be used (seéeerveny (2001)). The one chosen
here is

H(z,p) = In(vl|pl])- 2

Application ofthe method of characteristi¢see, e.g. Herzberger,1958) to equation (2) provides-tireensional
trajectories, calledays along which the eikonal equation (1) is satisfied. Eachsalescribed by the evolution of
theray stateconsisting of gosition functiont = x(7T) and aslowness functiop = p(T") of the time,T’, chosen
as the running parameter to describe the ray. The slownessrye (which, in isotropic media, is orthogonal to
the wavefront) is related to the so-callgldase velocityy = v(x) by the relationshifp| = 1/v. The ray evolution
is described by theharacteristic equationfHerzberger,1958)

: 1
TF=VH=0p = -ViH = V. 3)

Here, we use the notatioVi, = (0/0z1,--- ,0/0x,) andV, = (9/0p1, - - - ,0/0py,), wheren is the dimension
of the subsurface mode? or 3).

The O.D.E. system (3) can, in principle, be numerically edltay any integration method such as Runge-Kutta
(Pressman et al., 1986).

Equations (3) are only valid as long as the ray is traveling medium where(x) varies smoothly withe
(finite derivatives), which is assumed to be the case witihéngeological layers. When the ray is about to leave a
layer, the intersection point with the layer’s boundary trhescalculated. At this intersection point, the ray splits
into new rays, reflected and/or transmitted. Each new raggdadirection relative to the original ray depending
on the ray’s angle of incidence at the interface, and thecitgloontrast across the interface, according to Snell’s
law (Cerveny (2001)). Each new ray is then traced through thelaggt. In order to limit the complexity of the
simulation, it is general practice to specify the desiredemodes of the rays along each traversed layer, the so
calledsignatureof the ray (se€erveny (2001)).

3 — GEOLOGICAL MODEL

We assume that the geological model is a partition of spaoesifinite number oblocksor cells Each block is a
simple geometric solid (cube, triangular prism or tetrabajldeformed by polynomial transformations. Adjacent
blocks need not share whole faces. Physical propertiessaterged to vary smoothly within each block. These
concepts are defined formally below

3.1 Simplices and simploids
We define acanonical simplex of dimension> 0 as
A" = {(ug, -+ ,un) € R ui =0 A Y uy =1} 4)
1=0

The canonical simplices with dimension 1,2 and 3 are thermiaabsegment, triangle and tetrahedron, illustrated
in figure 1. Note that, - - - , u,, are thebarycentric coordinateselative to the simplex (see Farin (1992)).

The canonical simploid of kindh,, - , hy), denoted byS(*1--"+) is defined as the Cartesian product of
simplicesA™ x ... x A" (see deRose et al. (1993)). Figure 2 illustrates some sid®lo
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Figure 2: Canonical simploids.

3.2 Affine extension of domains

By extending the canonical simplex to include points witlgaité/e coordinates we obtain tlhdéine extensioonf
A™; which is theaffine space with dimension

A" ={ue R u; =1} (5)
1=0
Similarly, we define thaffine extensionf a simploidS (1 ») as themulti-affine space
Al — AP Al (6)

3.3 Simplicial and simploidal polynomials

We say that a functiod” from A™ to R is asimplicial polynomial function of degregif it is a homogeneous
polynomial function of degreg from R"*! to R restricted toA™.

Letu®, ... u(® be points ofd", ... A" respectively. We define thith transversal section oft/1- &
atu = (u, .- u®) e Al denoted byd™ - k| (u), as
{fuMY x o {ulDY 5 AP x {u DY P} 7)
Note that there is a bijection from("1--"+)| (u) to A
A simploidal polynomial function of typk,,--- , h; and degreegy = (g1, --,gx) IS a functionF’ from
AP to R such that when restricted to any transversal section™ | (u),i € {1,--- ,k} equals a simpli-

cial polynomial function of degreg from A" to R. Note thatF” cannot, in general, be factored into the product
of k& simplicial polynomial functions.
3.4 Gephysical block

We define ageophysical block with-dimensional domain angh-dimensional rangeor a(n, m)block as a pair
(D, F) whereD (the domain spackis ann-dimensional canonical simploid arid is a simploidal polynomial
function fromD to R™, whereD is the natural extension d.
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3.5 Bézier representation of a block

Let B = (D, F) be a(n, m)-block whose domaitD equalsS1-~+) Observe that the domain is completely
defined by thé-uple(hy, - - - , hx). The simploidal polynomial functiof’ can be expressed in terms of Bézier
coefficientgsee deRose et al. (1993)).

In the special case where is a simplexA™, the representation df of degreey consists off = (g;:n) Bézier
coefficients which are vectors @i™. We denote these coefficients bywherei ranges over?, the set of all
(n + 1) tuples(ig, - - - ,i,) Of natural numbers whose sumggsee the example in figure 3). The functifincan
be expressed as

Fu)= > B (u) (8)

ield

whereB;"? is theBernstein-Bézier polynomial of dimensiondegreey and index;, defined as

B () = ot i

3

Figure 3: Bézier representation of 2 3)-block (D, F'). The domainD is A% andF has 3 components, Y, 7,
each a simplicial polynomial of degree 3.

The computation of'(u) by formula (8) can be performed (rﬁi’{) n-dimension linear interpolation steps by
the DeCastejau algorithm (see Peters (1994)).
Now suppose the domai® is S+ and F is a simploidal polynomial function of degreg =

(g1, ,gx) (see figure 4). The Bézier representationfotonsists of]‘[f:1 (9-7';’7'-1‘) Bézier coefficients; The
value of F at a pointu = (u(V),--- ,u®) of D is given by
Flu)= " cip o, B (D) BE M (uk), 9)
ilelii
iperd

g

whereg;, ...;, are Bézier coefficients.

Figure 4: Bézier representation of simploidal polynomialdtions whose domains are &) ' and (b)S*1:!.
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Figure 5: Example of a cellular model.

3.6 Cellular model

For this paper, we define a geophysical model as a collecfign,on)-blocks whose union covers the region of
interestG and whose interiors are disjoint. See figure 5.

The cellular model includes aldopological relationsamong blocks (adjacencies, incidences, etc.) which aim
to increase the effectiveness of navigation inside the in@ael domain coordinate correspondendestween
adjacent blocks. Namely, for each pair (@f, m)-blocks B’ = (D', F') andB” = (D", F") that are adjacent
through a common facg we store an affine (1st degree) correspondence betweendidirtates ofD’ and D"

The correspondence is represented by two affine rid@End ©” from D’ andD” to R™ such that the images
©’(D’") and®” (D" have disjoint interiors but share the faEe Figure 6 illustrates such correspondence.

EI EII

s

Figure 6: Domain coordinate correspondence.

4 —CELL RAY TRACING IN BLOCKS LOCAL COORDINATES

In our proposed adaptation of ray tracing, the ray equat®yere expressed and integrated in terms of block’s local
coordinates (see Figure 7). More precisely, we replacettie|[s, p] by [«, p] wherea are the local coordinates
of the pointz in the current block. Note that the slowness vector remairggdbal (Cartesian) space coordinates.

For this purposes, we define themplicial local coordinatesy = (a1, - -+ ,«,) of A™ as an arbitrary affine
mapping from the affine extension df* to R™. An obvious choice would be; = u; fori =1, --- ,n (discarding
ug). For a simploidS”t -+ the local coordinates are obtained by concatenating thal tomordinates of the
constituent simpliced;,, , - - - , A"x,

System (3) is then rewritten as

da 14 o dp 41
ﬁ—W vp T = w UVQU (10)
where)V is the Jacobian of the block’s shape functions.
&fri
Wi = — 11
7o (11)
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at)

Figure 7: lllustration of parametric ray tracing

The JacobiaV describes the change from the block’s local coordinateoioad Cartesian coordinates. The
V. operator denote@/das, - - - ,9/0ay,) andV,, denotegd/dp1, - - - , 9/0p,,); wheren is the domain simploid
dimension, ang; is theith Cartesian coordinate of the slowness vegtoEach partial derivative is a polyno-
mial simploidal function whose Bézier coefficients are lgaand efficiently calculated from the block’s Bézier
coefficients.

System (10) is not valid when the matii¥ is singular. However, the absence of such singularitiesiasic
requirement for a well formed cell-based geomertic model.

The main advantage of this formulation is that detectiomefdurrent block limits becomes a set of trivial tests
(ov; = 0) or 1st degree testsy| + - - - + «, = 1) on the local coordinates.

5 —PHYSICAL PROPERTY MODELLING

The usual approach to modelling space-varying physicgigntes is what we callecoupled modellingin this
approach, space-varying physical properties are spedtifiehch layer by mathematical functions of the Cartesian
coordinates (e.g. B-splines) defined over a fixed 3D meshishatrelated to the model’'s layers and cells. A
drawback of this approach is the necessity of a second padckapline/mesh modeling software, with its own data
structures, libraries, and editors. Another drawbackas thdoes not guarantee matching of physical properties
with layer shape.

We propose &oupled modelvhere the relevant physical properties are modelled byrotyal functions of
the domain coordinates inside each block. Typically, fone-dimensional model, we us& m)-blocks with
m > 3 where the shape of each blo¢k, F') is described by the first three componentsFgfwhile the other
m — 3 components define the rock’s physical properties. Thisegudr does not require separate data structures,
libraries or editors for physical property modelling. Atdnally, the unified parameterization ensures a perfect
match between shape and properties (see Figure 8).

Figure 8: lllustration of a two-dimensional cell-based rabdlith coupled physical modelling. The cells &g 3)-
blocks whose domains are the canonical triarfjlé = A% and whose geometry (black lines) and velocity (color
scale) are defined by three simplicial polynomial functidiis) = (X (u), Y (u), v(u)) of degrees.
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Our proposed ray-tracing method is compatible with bothrepghes for property modelling. Formulation (10)
assumes our coupled physical modelling. For the decouptetbinwe simply replac®y~'V v by V,v.

Integration of system (10) requires the evaluatiomefdT anddp/dT, which, in turn require evaluating,
Vv and the jacobiaV at o point with given local coordinates The velocityv can be obtained by applying
the DeCastlejau algorithm to thecomponent of the current block’s functidn For the gradien¥ ,v, we can
precompute the Bézier coefficientsiaf/day, - - - , Ov/ O, for the current block (Farin (1992)). These derivatives
are polynomials of degre¢ — 1 whereg is the degree of'. Then,V,v can be computed for any given by
n applications of DeCastlejau. The Jacobian elem#&ht can be computed in the same way, from the Bézier
coefficients of theX, Y, Z components of'.

Observe that the computation of the Jacobigs and of the productBVi;IVav anszgvap does notrequire
iteration or recursive subdivision, and is therefore fastgeneral than the ray-boundary tests that are eliminated
by our ray tracing approach.

6 — NUMERICAL EXAMPLE

As an example, consider ray tracing in the two-dimensiorapdpysical model shown in Figure 9, which has the
same cell type and physical modelling as Figure 8. Figurehbivs the results of tracing a fan of rays from the
upper left corner with a fourth-order Runge-Kutta integrgPress et al. (1986)). The initial ray direction varied
from 5° to 85° in 5° increment. The ray positioX (7") was sampled at eadms,

Doow BEEE I . e DS Sy o I 2o

Figure 9: Velocity model used in Figure 10. The velocity raigfrom 1500m/s (cyan) to 5000m/s (red).

s il 2

Figure 10: Propagation of a fan of rays in the proposed @limiodel.

7 — CONCLUSIONS AND FUTURE WORK

Integrating ray equations in terms of local coordinatesié&ign (10) ) reduces considerably the cost of boundary
tests when integrating the ray propagation O.D.E. We plathénimprovements by detecting whether system (10)
has analytical solution in the current block, which woulldalus to cross that block in a single step.
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